3.1.3 \(\int x^3 (a+b \csc (c+d x^2)) \, dx\) [3]

Optimal. Leaf size=84 \[ \frac {a x^4}{4}-\frac {b x^2 \tanh ^{-1}\left (e^{i \left (c+d x^2\right )}\right )}{d}+\frac {i b \text {PolyLog}\left (2,-e^{i \left (c+d x^2\right )}\right )}{2 d^2}-\frac {i b \text {PolyLog}\left (2,e^{i \left (c+d x^2\right )}\right )}{2 d^2} \]

[Out]

1/4*a*x^4-b*x^2*arctanh(exp(I*(d*x^2+c)))/d+1/2*I*b*polylog(2,-exp(I*(d*x^2+c)))/d^2-1/2*I*b*polylog(2,exp(I*(
d*x^2+c)))/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {14, 4290, 4268, 2317, 2438} \begin {gather*} \frac {a x^4}{4}+\frac {i b \text {Li}_2\left (-e^{i \left (d x^2+c\right )}\right )}{2 d^2}-\frac {i b \text {Li}_2\left (e^{i \left (d x^2+c\right )}\right )}{2 d^2}-\frac {b x^2 \tanh ^{-1}\left (e^{i \left (c+d x^2\right )}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*Csc[c + d*x^2]),x]

[Out]

(a*x^4)/4 - (b*x^2*ArcTanh[E^(I*(c + d*x^2))])/d + ((I/2)*b*PolyLog[2, -E^(I*(c + d*x^2))])/d^2 - ((I/2)*b*Pol
yLog[2, E^(I*(c + d*x^2))])/d^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4268

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*
x))]/f), x] + (-Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[d*(m/f), Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 4290

Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int x^3 \left (a+b \csc \left (c+d x^2\right )\right ) \, dx &=\int \left (a x^3+b x^3 \csc \left (c+d x^2\right )\right ) \, dx\\ &=\frac {a x^4}{4}+b \int x^3 \csc \left (c+d x^2\right ) \, dx\\ &=\frac {a x^4}{4}+\frac {1}{2} b \text {Subst}\left (\int x \csc (c+d x) \, dx,x,x^2\right )\\ &=\frac {a x^4}{4}-\frac {b x^2 \tanh ^{-1}\left (e^{i \left (c+d x^2\right )}\right )}{d}-\frac {b \text {Subst}\left (\int \log \left (1-e^{i (c+d x)}\right ) \, dx,x,x^2\right )}{2 d}+\frac {b \text {Subst}\left (\int \log \left (1+e^{i (c+d x)}\right ) \, dx,x,x^2\right )}{2 d}\\ &=\frac {a x^4}{4}-\frac {b x^2 \tanh ^{-1}\left (e^{i \left (c+d x^2\right )}\right )}{d}+\frac {(i b) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{i \left (c+d x^2\right )}\right )}{2 d^2}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{i \left (c+d x^2\right )}\right )}{2 d^2}\\ &=\frac {a x^4}{4}-\frac {b x^2 \tanh ^{-1}\left (e^{i \left (c+d x^2\right )}\right )}{d}+\frac {i b \text {Li}_2\left (-e^{i \left (c+d x^2\right )}\right )}{2 d^2}-\frac {i b \text {Li}_2\left (e^{i \left (c+d x^2\right )}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 118, normalized size = 1.40 \begin {gather*} \frac {a x^4}{4}+\frac {b \left (\left (c+d x^2\right ) \left (\log \left (1-e^{i \left (c+d x^2\right )}\right )-\log \left (1+e^{i \left (c+d x^2\right )}\right )\right )-c \log \left (\tan \left (\frac {1}{2} \left (c+d x^2\right )\right )\right )+i \left (\text {PolyLog}\left (2,-e^{i \left (c+d x^2\right )}\right )-\text {PolyLog}\left (2,e^{i \left (c+d x^2\right )}\right )\right )\right )}{2 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*Csc[c + d*x^2]),x]

[Out]

(a*x^4)/4 + (b*((c + d*x^2)*(Log[1 - E^(I*(c + d*x^2))] - Log[1 + E^(I*(c + d*x^2))]) - c*Log[Tan[(c + d*x^2)/
2]] + I*(PolyLog[2, -E^(I*(c + d*x^2))] - PolyLog[2, E^(I*(c + d*x^2))])))/(2*d^2)

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int x^{3} \left (a +b \csc \left (d \,x^{2}+c \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*csc(d*x^2+c)),x)

[Out]

int(x^3*(a+b*csc(d*x^2+c)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csc(d*x^2+c)),x, algorithm="maxima")

[Out]

1/4*a*x^4 + b*(integrate(x^3*sin(d*x^2 + c)/(cos(d*x^2 + c)^2 + sin(d*x^2 + c)^2 + 2*cos(d*x^2 + c) + 1), x) +
 integrate(x^3*sin(d*x^2 + c)/(cos(d*x^2 + c)^2 + sin(d*x^2 + c)^2 - 2*cos(d*x^2 + c) + 1), x))

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 288 vs. \(2 (66) = 132\).
time = 3.72, size = 288, normalized size = 3.43 \begin {gather*} \frac {a d^{2} x^{4} - b d x^{2} \log \left (\cos \left (d x^{2} + c\right ) + i \, \sin \left (d x^{2} + c\right ) + 1\right ) - b d x^{2} \log \left (\cos \left (d x^{2} + c\right ) - i \, \sin \left (d x^{2} + c\right ) + 1\right ) - b c \log \left (-\frac {1}{2} \, \cos \left (d x^{2} + c\right ) + \frac {1}{2} i \, \sin \left (d x^{2} + c\right ) + \frac {1}{2}\right ) - b c \log \left (-\frac {1}{2} \, \cos \left (d x^{2} + c\right ) - \frac {1}{2} i \, \sin \left (d x^{2} + c\right ) + \frac {1}{2}\right ) - i \, b {\rm Li}_2\left (\cos \left (d x^{2} + c\right ) + i \, \sin \left (d x^{2} + c\right )\right ) + i \, b {\rm Li}_2\left (\cos \left (d x^{2} + c\right ) - i \, \sin \left (d x^{2} + c\right )\right ) - i \, b {\rm Li}_2\left (-\cos \left (d x^{2} + c\right ) + i \, \sin \left (d x^{2} + c\right )\right ) + i \, b {\rm Li}_2\left (-\cos \left (d x^{2} + c\right ) - i \, \sin \left (d x^{2} + c\right )\right ) + {\left (b d x^{2} + b c\right )} \log \left (-\cos \left (d x^{2} + c\right ) + i \, \sin \left (d x^{2} + c\right ) + 1\right ) + {\left (b d x^{2} + b c\right )} \log \left (-\cos \left (d x^{2} + c\right ) - i \, \sin \left (d x^{2} + c\right ) + 1\right )}{4 \, d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csc(d*x^2+c)),x, algorithm="fricas")

[Out]

1/4*(a*d^2*x^4 - b*d*x^2*log(cos(d*x^2 + c) + I*sin(d*x^2 + c) + 1) - b*d*x^2*log(cos(d*x^2 + c) - I*sin(d*x^2
 + c) + 1) - b*c*log(-1/2*cos(d*x^2 + c) + 1/2*I*sin(d*x^2 + c) + 1/2) - b*c*log(-1/2*cos(d*x^2 + c) - 1/2*I*s
in(d*x^2 + c) + 1/2) - I*b*dilog(cos(d*x^2 + c) + I*sin(d*x^2 + c)) + I*b*dilog(cos(d*x^2 + c) - I*sin(d*x^2 +
 c)) - I*b*dilog(-cos(d*x^2 + c) + I*sin(d*x^2 + c)) + I*b*dilog(-cos(d*x^2 + c) - I*sin(d*x^2 + c)) + (b*d*x^
2 + b*c)*log(-cos(d*x^2 + c) + I*sin(d*x^2 + c) + 1) + (b*d*x^2 + b*c)*log(-cos(d*x^2 + c) - I*sin(d*x^2 + c)
+ 1))/d^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{3} \left (a + b \csc {\left (c + d x^{2} \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*csc(d*x**2+c)),x)

[Out]

Integral(x**3*(a + b*csc(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csc(d*x^2+c)),x, algorithm="giac")

[Out]

integrate((b*csc(d*x^2 + c) + a)*x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^3\,\left (a+\frac {b}{\sin \left (d\,x^2+c\right )}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b/sin(c + d*x^2)),x)

[Out]

int(x^3*(a + b/sin(c + d*x^2)), x)

________________________________________________________________________________________